

Prioritized Technology: RPS Orbital and Surface Power

- Radioisotope Thermoelectric Generator - eMMRTG

Technical Goal

- A 2016 study conducted with the mission community identified impediments to using the MMRTG to support science missions.
- The MMRTG degradation causes concerns for the mission since it significantly affects the available power at the mission destination.
 - This is of increased concern for those missions that have longer cruise times before reaching the science destination.
 - The high degradation rate causes the missions to carry an extra unit to meet end of destination power needs for the mission.
 - A lower degradation rate is desired.
 - For reference the MMRTG rate is 4.8%, the eMMRTG goal is 2.5%, the GPHS-RTG rate was 1.8%.
- The technical goal of the eMMRTG path is to transfer the TE materials technology to industry and mature the technology such that the technology can be integrated into a enhanced MMRTG.
- The driving Baseline and Threshold requirements for the eMMRTG respectively are: .
 - The eMMRTG shall have an EODL power greater than or equal to 80We.
 - The eMMRTG will have an EODL power greater than or equal to 73.7We.

Technical Status - SOA

- The current SOA for RPS is the MMRTG (6% efficiency), which was designed to multi-mission requirements
- MMRTG Engineering Unit successfully tested to the multi-mission levels
- MMRTG F1 was proto-flight tested to the MSL requirements
- Investments made in the thermoelectric (TE) technology area have lead to the development of materials that have a higher efficiency (8% efficiency) and a lower degradation rate.

Item	Multi-mission	MSL
<u>Performance</u>		
Thermal Inventory	244-256 W/GPHS	244-256 W/GPHS
BOM power at 28 V	> 110 W	> 110 W
Load voltage range	22-36 Vdc	22-36 Vdc
Mass	<45 kg	<46.5 kg
Loads		
Random vibration, flight	0.10 g2/Hz	0.03 g2/Hz
Random vibration, qual	0.20 g2/Hz	0.06 g2/Hz
Quasi-static load	30 g	16 g
Pyroshock	6000 g	3000 g
Environment		
Fin root temperature range	50°C to 200°C	50°C to 200°C
Atmosphere	vacuum & atm	vacuum & atm

Definitions

Beginning of Life (BOL) is defined as time of fueling Beginning of Mission (BOM) is defined as Launch, and can be as long as 3 years after BOL End of Design Life (EODL) is 17 years after BOL

Heat Source

Step-2 GPHS, estimated at 244-256 W_t at BOL will be used for this study

Mission Applications

- The Baseline requirement results in a system that will provide > 45 % more power over the MMRTG at EODL.
 - By achieving the lower degradation rate of 2.5% as compared to the 4.8% rate of the MMRTG, the eMMRTG would provide > 79% EODL power as compared to the MMRTG.

Development Cost and Schedule